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Abstract. The diffraction of laser-cooled atoms from a spatially-periodic potential is modelled using rigor-
ous coupled-wave analysis. This numerical technique, normally applied to light-diffraction, is adapted for
use with atomic de Broglie waves incident on a reflecting diffraction grating. The technique approximates
the potential by a large number of constant layers and successively solves the complex eigenvalue problem
in each layer, propagating the solution up to the surface of the grating. The method enables the diffraction
efficiencies to be calculated for any periodic potential. The results from the numerical model are compared
with the thin phase-grating approximation formulae for evanescent light-wave diffraction gratings and ide-
alised magnetic diffraction gratings. The model is applied to the problem of diffracting Rb atoms from a
grating made from an array of permanent magnets.

PACS. 03.75.Be Atom and neutron optics – 42.25.Fx Diffraction and scattering

1 Introduction

The development of laser-cooling techniques for creating
clouds of ultra-cold atoms has renewed interest in per-
forming wave-optical experiments on matter waves. One
such experiment is to observe the diffraction of atoms from
a periodic potential. The diffraction of atoms from the
standing wave pattern produced by an evanescent light
field has been observed by a number of groups [1–3]. An-
other method for producing reflecting diffraction gratings
for atoms has been proposed based on fine arrays of per-
manent magnets or current-carrying wires [4]. These struc-
tures can be used to form mirrors that reflect [5–15] or
deflect paramagnetic atoms [16,17] (also see the review
[18]). A periodic variation in the strength of the magnetic
field is obtained when a uniform field is applied. The aim
is to diffract atoms from this spatially periodic potential.

The potential associated with a periodic array of mag-
nets may have a complicated spatial dependence, making
exact analytical formulations difficult. For this reason we
develop a numerical method for calculating the intensity
of the diffracting orders of atom de Broglie waves from
any periodic potential. This provides a tool for simulating
atom diffraction experiments, limited only by the accu-
racy of the model for the potential. The starting point for
the model is the time-independent Schrödinger equation
for the atoms in a periodic potential. This can be writ-
ten as a scalar wave equation which is the same as that
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for light in a dispersive optical medium. This allows us to
draw upon the extensive optics literature on the modelling
of optical diffraction gratings.

The problem of calculating the diffraction of waves
from a reflecting diffraction grating at first seems straight-
forward. However, unless great care is taken in formulating
the problem the calculations are prone to numerical insta-
bilities [19]. There are now many different techniques de-
veloped by the optics community that solve this problem.
The method that we choose for modelling the diffraction of
atoms, known as rigorous coupled-wave analysis (RCWA),
is described by Moharam et al. [20,21]. This implemen-
tation is specifically formulated to be numerically stable
for dielectric gratings that have arbitrary refractive in-
dex profiles, including arbitrary surface relief. As shown
below, this is equivalent to a periodic but otherwise arbi-
trary potential that will reflect atoms. The theory of the
diffraction of atoms from evanescent light waves has been
investigated by a number of authors [22–26] (also see the
review [27]). The multi-slice method employed by Murphy
[25], originally formulated for electron diffraction calcula-
tions, is quite similar to the RCWA method that we review
below.

In the following sections we first review the method of
RCWA. We then compare results using this method with
the thin phase-grating approximation formulae for both
evanescent wave and magnetic potentials. Finally we con-
sider a grating made from an array of permanent magnets
with square cross-sections to be used as a beam splitter
and give an example calculation to optimise the splitting.
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2 Rigorous coupled-wave analysis for atoms

The wave properties of matter are described by the time-
independent Schrödinger equation

~2

2m
∇2Ψ(r) + (E − V (r))Ψ(r) = 0 (1)

where E is the total energy of the atom of mass m, V is
the potential energy with ~ Planck’s constant divided by
2π. We express the total energy in terms of the kinetic
energy of the atom at a point where the potential is zero,
E = ~2k2

I /2m, where kI is the wave number of the incident
atom, and rescale the potential U(r) ≡

(
2m/~2

)
V (r),

which enables us to write (1) in the form

∇2Ψ(r) + (k2
I − U(r))Ψ(r) = 0. (2)

This has the same form as the scalar wave equation for
light in an inhomogeneous, dispersive, dielectric medium
with a refractive index n =

√
1− U(r)/k2

I .
The potential U is responsible for reflecting and

diffracting the atoms. For simplicity we lie the diffrac-
tion grating in the x–z-plane so that the potential is in-
dependent of z, periodic in x and decreases with height y,
U(x, y). Let kz be the component of the incident wave vec-
tor parallel to the z-axis, write Ψ(r) = Ψ(x, y) exp(ikzz)
and define ki =

√
k2

I − k2
z , then (2) can be written as

∂2Ψ(x, y)
∂x2

+
∂2Ψ(x, y)
∂y2

+
(
k2
i − U(x, y)

)
Ψ(x, y) = 0. (3)

This is a scalar wave equation in two dimensions. It is
the same wave equation satisfied by the electric field of
an electromagnetic wave when the vector characteristic of
the field can be ignored, such as for planar diffraction with
TE polarization. This enables us to use techniques de-
veloped for optical diffraction problems from non-uniform
dielectrics and apply them to the problem of atom diffrac-
tion. Specifically we shall use rigorous coupled-wave anal-
ysis (RCWA) that we briefly review.

In this analysis, the grating potential U plays the role
of a dielectric medium and we assume that it is appre-
ciable only in some region of space about y = y0. The
points above and below y0 where U becomes negligible
are identified respectively with the top and the bottom of
the grating. These points are separated by a distance d.
For a totally reflecting grating we choose the “bottom” of
the grating at some point deep in the grating where the
potential energy is much greater than the atom kinetic en-
ergy. Following Moharam et al. [21], the wave in a region
above the grating is the sum of the incident wave (of unit
amplitude) and a series of diffracted waves

Ψ+(x, y) = exp (ikxx− ikyy)

+
∞∑

n=−∞
Rn exp(iknx+ ik′ny) (4)

where ky =
√
k2
i − k2

x is the magnitude of the component
of the wave number in the y-direction and where Rn is

the reflectance of the grating for diffraction order n. The
x-component of the diffracted wave number is

kn = kx + nκ (5)

where κ = 2π/a with a the period of the grating, and the
y-component is

k′n =
√
k2
i − k2

n, ki > kn,

k′n = i
√
k2
n − k2

i , ki < kn. (6)

Note that this becomes imaginary if kn becomes greater
than the incident wave number. It is this term that leads
to exponentially increasing amplitudes that can result in
numerical instability. In (6) we take the positive square-
root so that these evanescent orders decay as y → ∞.
Note also that we have assumed that the potential is zero
above the grating. If instead the potential has some value
U0 in the region where ki is defined, then k2

i represents
the energy of the atom in this potential, that is k2

i =
k2

I − k2
z − U0.

For a thin grating we must also take account of waves
that are transmitted through it. The wave below a grating
of thickness d is written as

Ψ−(x, y) =
∞∑

n=−∞
Tn exp (iknx− ik′n(y − d)) (7)

where Tn is the transmittance of the grating for order n.
The thickness of the grating d is included in (7) to explic-
itly take account of evanescent waves. Thus when k′n is
imaginary we have the solution explicitly decaying expo-
nentially with distance d.

The wave within the grating is given by the expansion

Ψ(x, y) =
∑
n

φn(y) exp(ikxx+ inκx) (8)

and likewise the potential is represented by a Fourier series

U(x, y) =
∑
n

Un(y) exp(inκx). (9)

These two expansions, together with (3) give the equation

d2φn/dỹ2 +
(

1− k̃2
n

)
φn =

∑
m

Ũn−mφm (10)

where we have introduced the reduced co-ordinates ỹ =
kiy, k̃2

n = k2
n/k

2
i , and Ũn−m(y) = Un−m(y)/k2

i . For conve-
nience we have not shown explicitly the dependence on y
(or ỹ).

We wish to solve (10) with boundary conditions (4, 7).
The set of coupled-wave equations (10) has the form of a
matrix problem. This is solved by dividing the potential
into a large number of layers indexed by a layer number l.
The top of the lth layer is located at ỹl. Within each
layer, located between ỹl−1 < ỹ ≤ ỹl, the potential Ũn−m
is taken to be constant, perhaps given by its average
value in the layer. This reduces the problem to finding
the eigenvalues and eigenvectors of the matrix

M l
nm =

(
k̃2
n − 1

)
δnm + Ũn−m (11)
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allowing us to diagonalise (10) within the layer, yielding
a coupled plane-wave solution

φln =
∑
m

Slnm
(
Alm exp

(
qlm(ỹ − ỹl)

)
+Blm exp

(
−qlm(ỹ − ỹl−1)

))
. (12)

The qlm are vectors equal to the square-roots of the eigen-
values for each layer. The sign of the root is chosen so that
the real part of ql is positive. Slnm is the mth eigenvector
with components indexed by n. The coefficients Alm and
Blm are vector constants for each layer and have values
that are determined by matching boundary conditions be-
tween layers. If the lth layer has a thickness dl = yl−yl−1,
with d̃l = kidl, then matching wave amplitudes and gra-
dients between layers l and l + 1 gives[

Sl SlX l

V l −V lX l

][
Al

Bl

]
=
[
Sl+1X l+1 Sl+1

V l+1X l+1 −V l+1

][
Al+1

Bl+1

]
(13)

where

V lnm ≡ Slnmqlm (14)

and

X l
nm ≡ δnm exp

(
−qlmd̃l

)
. (15)

Note that each element of the matrices in (13) is also
a matrix. The problem has been cast into this form for
mathematical convenience.

The problem with a reflecting diffraction grating is
that the boundary conditions are specified only at the top
of the grating. Moharam et al. [21] devise a method that
gives the reflectance at the top of the grating without re-
quiring any knowledge of the values of the wave at the
lower boundary, or at any point within it. We start by
assuming that there is some matrix al linking vector co-
efficients Al and Bl

Bl = alAl. (16)

Then the left side of (13) can be written in the form[
Sl SlX l

V l −V lX l

][
Al

Bl

]
=
[
Sl SlX lal

V l −V lX lal

][
Al

Al

]
=
[
f l

gl

]
Al

(17)

where [
f l

gl

]
=
[
Sl(I +X lal)
V l(I −X lal)

]
. (18)

After rearranging (13) we find that[−Sl+1 f l

V l+1 gl

] [
Bl+1

Al

]
=
[
Sl+1X l+1

V l+1X l+1

]
Al+1 (19)

which relates Bl+1 to Al+1 by an equation of the
form (16). Specifically, after relabelling indices we have[

al

bl

]
=
[−Sl f l−1

V l gl−1

]−1 [
SlX l

V lX l

]
(20)

where the matrix bl is obtained numerically as a part of
the matrix calculation but we never use it. Now, given f0

and g0 at the lower boundary of the grating, we can use
(20) to get a1 at the next layer and (18) to calculate f1

and g1. By repeating these calculations, the solution can
be propagated to the top of the grating. Note that these
equations do not require the coefficients Al or Bl to be
specified at the lower boundary.

The starting values f0 and g0 are found by matching
amplitudes and gradients of the solution (12) at layer l = 1
to the wave (7). After rearranging the result to have the
same form as (18) we find that f0 = I and g0 = −iK
where

Knm = δnmk̃
′
n (21)

and I is the identity matrix.
Finally, we need to relate these matrices to the bound-

ary conditions at the top layer. Let the top of the upper-
most layer be located at ỹ = ỹL. Following the form of (4)
we write the wave beyond the top of the grating as

Ψ+(x, y) =
∞∑

n=−∞

[
δn0 exp

(
−ik̃′i(ỹ − ỹL)

)
+Rn exp

(
ik̃′n(ỹ − ỹL)

)]
exp(iknx). (22)

On matching amplitudes and gradients with (12) at ỹ = ỹL

then [
R +∆

iK(R−∆)

]
=
[
SL SLXL

V L −V LXL

][
AL

BL

]
(23)

where we have introduced the column vector ∆n = δn0.
Equation (23) has the same form as (13). As before we
can write BL in terms of AL and then we solve for R
by eliminating AL. Thus we obtain the reflectance of the
grating in the form of a matrix equation

R = −
(
gL
(
fL
)−1 − iK

)−1 (
gL
(
fL
)−1

+ iK
)
∆. (24)

In summary, we solve the diffraction problem numerically
by dividing the potential into a number of layers, deter-
mine al, f l and gl at each layer, and propagate these to
the top of the grating. These matrices depend on Sl, V l,
X l and ql which are obtained from the eigenvectors and
the eigenvalues of the matrix (11) in each layer.

As a check on our diffraction calculation, there are
two physical conditions that must be obeyed. Firstly, for
a reflecting grating where there is no transmission, the
sum of the diffraction efficiencies must be unity∑

n

en = 1 (25)
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with

en = R∗nRnRe (k′n/ky) (26)

where Re( ) means the real-part. This follows from en-
ergy conservation in the case of light or flux conservation
for atoms. Taking the real part in (26) means that we
only sum over the non-evanescent orders. In general, the
RCWA satisfies condition (25) to at least one part in 1010,
as discussed in [21]. The second condition is known as reci-
procity [19] which is also a consequence of energy conser-
vation. The reciprocity theorem states that the diffraction
efficiency en in the nth order at angle θn from a wave in-
cident at angle θ is equal to the diffraction efficiency in
the nth order at angle −θ from a wave incident at angle
−θn. All angles are measured with respect to the grating
surface normal. Again we find that the RCWA satisfies
this condition in all cases we have tested.

The start position for a calculation defines the lower
boundary of the grating, below which we assume that the
waves are transmitted (see Eq. (7)). The start position is
chosen some distance beyond the classical turning point
which is where the initial downwards kinetic energy of the
atom equals the potential energy. If the sum of the diffrac-
tion efficiencies (25) is not unity then some of the waves
are leaking from below the grating which implies that the
start position is not deep enough in the potential. The
stop position defines the upper boundary of the grating
and is taken where the potential becomes negligible com-
pared with the atom energy. The width of each layer is
chosen by trial and error until the diffraction efficiencies
do not change. Usually the layer width is a small fraction
of the potential decay length.

The total number of terms in the expansion (8) de-
pends on the highest diffracted order required of the wave
(including evanescent orders). This, in turn, depends on
the grating period and depth, the wavelength of the atom
and its angle of incidence. In practise we increase the num-
ber of orders until the results of the calculation do not
change significantly.

The above methods have been combined in a computer
program for calculating the diffraction patterns of atoms
from gratings based on any periodic potential, such as
from evanescent waves or arrays of magnets. The code
was tested by comparing results for a perfectly reflecting
sinusoidal diffraction grating with those from a rigorous
integral theory of Maystre [19]. The code was also tested
in the regime of very small wavelength to period ratio
where the sinusoidal reflector should behave classically.
In the next section we compare the results of the RCWA
implementation with the TPGA formula of Henkel et al.
[26] for evanescent wave gratings and that of Davis [28]
for magnetic gratings.

3 Comparison with TPGA theories

In this section we compare the results from RCWA cal-
culations with two approximate analytical formulae based
on the thin phase grating approximation (TPGA). The

TPGA formulae are derived from a semi-classical method
for estimating the wavefunction of the diffracting wave.
In essence, the diffraction problem for a reflecting grating
is separated into two parts, that of reflection and that of
diffraction. The trajectory of the atom in the reflecting
potential is solved classically and the atom wavefunction
is found by integrating the phase shift arising from the
diffracting (periodic) part of the potential along the clas-
sical trajectory.

We consider two types of diffraction gratings: one made
from an evanescent wave and one from a periodic array of
magnets.

3.1 Evanescent light grating

A periodic potential can be formed from a standing
evanescent light wave [22]. This acts as a reflecting diffrac-
tion grating for atoms. Following Henkel et al. [26] we
write the potential for the evanescent wave grating in the
form

U(x, y) = U0 exp(−κy)(1 + ε cosκx) (27)

where κ = 2π/a with a the period of the grating and ε
is the normalised grating potential, also known as the in-
terference contrast [3]. This contains a mirror term that
reflects the atoms and a diffraction term with a strength
controlled by ε. Henkel et al. [26] derive an analytical ex-
pression for the diffraction probabilities using the thin
phase-grating approximation. In terms of diffraction ef-
ficiencies this takes the form

eTPGA
n = (cos θn/ cos θ)J2

n(2 cos θβ(θ)εki/κ) (28)

where Jn is a Bessel function, θ the incidence angle, θn
the angle of diffraction and

β(θ) = π tan θ/sinh(π tan θ). (29)

This formula is valid provided that the atom wavelength
is small compared to the grating period, λ � a and that
the contrast is small, ε� 1. Note that θn is obtained from
the grating equation

sin θn = sin θ + nλ/a (30)

which is a consequence of (5).
To compare the RCWA method with the approximate

formula (28) we consider the case of normal incidence
θ = 0 and vary the contrast ε. To ensure λ � a we
set λ/a = 0.1. Figure 1a compares the diffraction ef-
ficiencies for the first three orders calculated using the
RCWA method and (28). The two methods show good
agreement for small contrast but the results diverge as
the contrast gets larger. This is because the assumption
of small contrast in the TPGA formula is failing. The sum
of the diffraction efficiencies, shown in Figure 1b, should
obey the energy conservation criterion (25). Note that the
TPGA formula gets progressively worse at satisfying this
relation and that this also follows the divergence between
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Fig. 1. (a) The results of RCWA and TPGA for an evanescent
wave grating as a function of the contrast. The parameters are:
θ = 0, λ/a = 0.1. (b) Sums of diffraction efficiencies associated
with (a).

results in Figure 1a. This suggests that we might use con-
dition (25) as a qualitative measure of the reliability of
the TPGA calculation.

As another example, we compare the RCWA with the
TPGA for a range of incidence angles. Here we set ε = 0.2
and λ/a = 0.1. The results are shown in Figure 2. Again
the TPGA formula gives acceptable results. As θ → 90◦
the TPGA formula becomes more accurate as the higher
orders decay.

3.2 Magnetic gratings

Our motivation for developing the RCWA for atoms is to
model the diffraction from magnetic diffraction gratings.
These can be formed using a periodic array of perma-
nent magnets or current carrying wires and applying an
appropriate uniform magnetic field [4]. In the adiabatic
approximation a paramagnetic atom experiences a poten-
tial proportional to the magnitude of the magnetic field B,
which, depending on the source of the field, may have a
complicated spatial dependence. This makes it difficult to
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Fig. 2. (a) The results of RCWA and TPGA for an evanescent
wave grating as a function of incidence angle. The parameters
are: ε = 0.2, λ/a = 0.1. (b) Sums of diffraction efficiencies
associated with (a).

solve the diffraction problem analytically, forcing us to use
numerical techniques such as RCWA. In this section, how-
ever, we consider an ideal case. Following Opat et al. [29]
we approximate our potential U by

U(x, y) =√
U2

a + 2UaUm cosκx exp(−κy) + U2
m exp(−2κy). (31)

This approximation is reasonable provided the atom does
not approach too close to the source of the field. Here Um

is the potential associated with the magnet array, Ua the
potential arising from the magnetic field applied perpen-
dicular to the mirror surface and κ = 2π/a with a the
period of the grating. The potential is related to the mag-
nitude of the magnetic field B by

U(x, y) =
(
2m/~2

)
µBmFgFB(x, y) (32)

where µB is the Bohr magneton and gF the Landé factor.
This assumes the atom is paramagnetic and adiabatically
follows the variations in the field direction, i.e. the space
quantisation number mF is constant.
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The grating described by the potential (31) has a large
number of spatial harmonics as a consequence of its non-
linear character. If we approximate this by linear terms

U(x, y) ≈ Um exp(−κy) + Ua cosκx (33)

when Um exp(−κy) ≥ Ua and by

U(x, y) ≈ Ua + Um exp(−κy) cosκx (34)

when Um exp(−κy) ≤ Ua then the potential is amenable
to analysis by the semi-classical method. The result is a
TPGA formula for magnetic gratings [28]

eTPGA
n = (cos θn/ cos θ)J2

n(αUa/kiκ) (35)

where

α = cos(γ + θ) + sin γ/ sinθ (36)

and

γ =
ki sin θ√

k2
i cos2 θ + Ua

ln

(√
k2
i cos2 θ + Ua + ki cos θ√
k2
i cos2 θ + Ua − ki cos θ

)
·

(37)

In these formulae, the value of the incident wavenumber
ki is that of the atom in the constant potential Ua (see dis-
cussion in Sect. 2). The TPGA formula (35) with (36, 37)
is valid provided that λ� a and that Ua � k2

T where kT is
the atom wave number at the classical turning point. This
can be estimated from kT ∼ 0.69(λ/a cosθ)0.32ki [28].

As with the evanescent wave grating, we compare the
RCWA method using potential (31) with the approximate
formula (35) as a function of the applied magnetic field Ba

for the case of normal incidence θ = 0 with λ = 0.1 µm and
a = 1 µm. Here we set ZmFgF = 1 where Z is the atom
mass number. Figure 3a compares the diffraction efficien-
cies for the first three orders calculated using the RCWA
method and TPGA (35) while Figure 3b shows the sum of
the diffraction efficiencies. As before, the TPGA formula
gives reasonable values but becomes progressively worse
as the diffraction efficiency sum deviates from 1. We ob-
serve that the errors become significant for applied fields
greater than about 1 Gauss. This is consistent with the
requirement that Ba � 1.5 Gauss to satisfy Ua � k2

T.
Figures 4a and 4b compare the RCWA with the TPGA
for a range of incidence angles. Here we set Ba = 1 Gauss,
λ = 0.1 µm, a = 1 µm and ZmFgF = 1. The results are
similar to those in Figure 2 where the result improves with
increasing incidence angle.

3.3 Discussion

The TPGA formulae are obtained by ignoring higher-
order terms in the wave equation [28]. This requires that
the potential vary slowly with position compared to the
atom wavelength and that the potential be weak. Since
the atom wavelength becomes quite large near the classi-
cal turning point these conditions may well be violated,
leading to errors.
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Fig. 3. (a) The results of RCWA and TPGA for a magnetic
grating as a function of the applied magnetic field. The pa-
rameters are: θ = 0, λ = 1 µm, a = 1 µm and ZmFgF = 1.
(b) Sums of diffraction efficiencies associated with (a).

The TPGA formula are based on the classical trajec-
tory of the atom in the mirror potential. As such, these
formulae do not take account of the evanescent waves in
the diffraction grating. These waves may be important
in some circumstances. For example, an incident wave at
an angle θ � 0 becomes evanescent where the poten-
tial energy exceeds the vertical component of the kinetic
energy. However, an accompanying diffracted order with
θn < θ will have a greater vertical kinetic energy and may
be non-evanescent in this region. Coupling between the
evanescent incident wave and the non-evanescent diffract-
ing order can take place, altering the overall diffraction
efficiencies. Such coupling would be important for reflect-
ing potentials that vary slowly in the region of the clas-
sical turning point for this would extend the region of
the evanescent coupling. Furthermore, evanescent wave
effects are important for gratings with large amplitudes
(e.g. large ε) because the waves can be evanescent in one
region, such as where ε cosκx > 0 and non-evanescent in
an adjacent region, where ε cosκx < 0. The RCWA takes
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Fig. 4. (a) The results of RCWA and TPGA for a magnetic
grating as a function of incidence angle. The parameters are:
Ba = 1 Gauss, λ = 1 µm, a = 1 µm and ZmFgF = 1. (b) Sums
of diffraction efficiencies associated with (a).

account of such coupling and this may explain some of the
discrepancies.

Another limitation with the TPGA is that it does not
take account of focussing effects. This point is discussed in
[26]. It is possible that the waves interacting with the grat-
ing can come to a focus within the grating. Such effects
arise from large variations in the potential over distances
compared to the atom wavelength which clearly violate
the TPGA. Focussing effects were noted by Maystre [19]
as causing failure in many early theories of optical diffrac-
tion gratings and ultimately are associated with numerical
instability. The RCWA, by its careful treatment of evanes-
cent orders, avoids these problems.

4 Diffraction from an array of magnets

One method for creating a diffraction grating is to sputter
a thin magnetic film onto a surface with a “square wave”
profile. Mirrors have been made and tested using this tech-
nique and these can be formed into diffraction gratings
by applying an appropriate uniform magnetic field. These
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Fig. 5. The diffraction efficiencies in the orders −1, 0 and
+1 calculated using RCWA for 50 nm wavelength 85Rb atoms
incident on an array of permanent magnets. The magnets have
width and height 500 nm and the array has a period of 700 nm.
The TPGA results are also shown.

diffraction gratings may be used as beam splitters in an
interferometer. Our interest is to determine the optimum
angle for beam splitting given a grating and a specified
atom wave length. As an example calculation, we con-
sider 85Rb with λ = 50 nm and a grating with a period
a = 700 nm. We ignore any effects due to gravity.

The magnet array is taken to consist of magnets of
height h and width w of 500 nm with a magnetic field at
the centre top of 100 Gauss. The magnetic field from an
array of these magnets is given by

B(x, y) =
µ0M

4π

∑
n

(Bx(x+ na, y)x̂ + By(x+ na, y)ŷ)

(38)

where

Bx(x, y) = ln

((
y2 + (x− w

2 )2
) (

(y − h)2 + (x+ w
2 )2
)(

y2 + (x+ w
2 )2
) (

(y − h)2 + (x− w
2 )2
))
(39)

and

By(x, y) =

2 arctan

 hw
(
y(y − h)− x2 + w2

4

)
(
x2 + y(y − h) + w2

4

)2
+h2

(
x2 − w2

4

)
− x2w2

·
(40)

The sum in (38) is over the magnets in the array. The
diffraction efficiencies for the orders −1, 0 and +1 with
an applied field of 0.2 Gauss are shown in Figure 5. For
comparison we have included the TPGA results based
on (35). For normal incidence the TPGA formula gives
a poor result. For the parameters given it is only valid for
Ba � 0.2 Gauss. Following the trends seen in Figure 4a
we might expect the TPGA formula to become more ac-
curate with increasing incidence angle. While there is a
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qualitative improvement, there are still significant differ-
ences. This highlights the value of an accurate method for
determining diffraction efficiencies.

For a beam splitter we usually require efficient split-
ting into two beams. With the grating in this example and
the given atom wavelength, this is not possible since many
high orders exist in the diffraction pattern. This grating
would make a poor beam splitter. The best that can be
done is about 22% efficiency into two orders −1 and +1 at
θ = 49 degrees with about 12% into order 0, or about 18%
into two orders, 0 and +1, at θ = 41 degrees. Uneven split-
ting can be achieved at angles greater than 50 degrees, but
whether or not this is of use depends on the application.

5 Conclusion

The method of rigorous coupled-wave analysis is a use-
ful numerical tool for calculating the diffraction of laser-
cooled atoms from periodic potentials, such as formed by
arrays of magnets, where approximate theories are not ap-
plicable. We have reviewed the theory behind the method
and have outlined the procedures required for its imple-
mentation. Results of the RCWA applied to some example
diffraction problems have been compared with formulae
based on the thin phase-grating approximation. An in-
dication of the quality of the predictions of a diffraction
theory is the deviation from 1 of the sum of the diffrac-
tion efficiencies. The RCWA method satisfies this to better
than 1 part in 1010. The sum gives an indication of the
regimes under which the TPGA formulae fail. We have
also presented an example calculation of the diffraction
efficiencies for grating made from an array of permanent
magnets in the regime where the TPGA formula is not
applicable. The results of the RCWA has highlighted the
weakness as a beam splitter of the grating design used in
the example.
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